Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 11(1): 19888, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1454817

ABSTRACT

To cope with the shortage of filtering facepiece respirators (FFRs) during the coronavirus (COVID-19) pandemic, healthcare institutions were forced to reuse FFRs after applying different decontamination methods including gamma-irradiation (GIR). The aim of this study was to evaluate the effect of GIR on the filtration efficiency (FE) of FFRs and on SARS-CoV-2 detection. The FE of 2 FFRs types (KN95 and N95-3 M masks) was assessed at different particle sizes (0.3-5 µm) following GIR (0-15 kGy) delivered at either typical (1.65 kGy/h) or low (0.5088 kGy/h) dose rates. The detection of two SARS-CoV-2 RNA genes (E and RdRp4) following GIR (0-50 kGy) was carried out using RT-qPCR assay. Both masks showed an overall significant (P < 0.001) reduction in FE with increased GIR doses. No significant differences were observed between GIR dose rates on FE. The GIR exhibited significant increases (P ≤ 0.001) in the cycle threshold values (ΔCt) of both genes, with no detection following high doses. In conclusion, complete degradation of SARS-CoV-2 RNA can be achieved by high GIR (≥ 30 kGy), suggesting its potential use in FFRs decontamination. However, GIR exhibited adverse effects on FE in dose- and particle size-dependent manners, rendering its use to decontaminate FFRs debatable.


Subject(s)
COVID-19/virology , Decontamination/methods , Masks , SARS-CoV-2/isolation & purification , Ventilators, Mechanical , COVID-19/prevention & control , COVID-19/transmission , Filtration , Gamma Rays , Humans , Particle Size
2.
Ann Saudi Med ; 40(5): 373-381, 2020.
Article in English | MEDLINE | ID: covidwho-782327

ABSTRACT

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has prompted a need for mass testing to identify patients with viral infection. The high demand has created a global bottleneck in testing capacity, which prompted us to modify available resources to extract viral RNA and perform reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) to detect SARS-COV-2. OBJECTIVES: Report on the use of a DNA extraction kit, after modifications, to extract viral RNA that could then be detected using an FDA-approved SARS-COV-2 RT-qPCR assay. MATERIALS AND METHODS: Initially, automated RNA extraction was performed using a modified DNA kit on samples from control subjects, a bacteriophage, and an RNA virus. We then verified the automated extraction using the modified kit to detect in-lab propagated SARSCOV-2 titrations using an FDA approved commercial kit (S, N, and ORF1b genes) and an in-house primer-probe based assay (E, RdRp2 and RdRp4 genes). RESULTS: Automated RNA extraction on serial dilutions SARS-COV-2 achieved successful one-step RT-qPCR detection down to 60 copies using the commercial kit assay and less than 30 copies using the in-house primer-probe assay. Moreover, RT-qPCR detection was successful after automated RNA extraction using this modified protocol on 12 patient samples of SARS-COV-2 collected by nasopharyngeal swabs and stored in viral transport media. CONCLUSIONS: We demonstrated the capacity of a modified DNA extraction kit for automated viral RNA extraction and detection using a platform that is suitable for mass testing. LIMITATIONS: Small patient sample size. CONFLICT OF INTEREST: None.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , High-Throughput Nucleotide Sequencing/methods , Nasopharynx/virology , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Automation , COVID-19 , COVID-19 Testing , Chlorocebus aethiops , Clinical Laboratory Techniques , Coronavirus Envelope Proteins , Coronavirus Nucleocapsid Proteins , Coronavirus RNA-Dependent RNA Polymerase , Encephalomyocarditis virus/genetics , Humans , Levivirus/genetics , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , RNA, Viral/analysis , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL